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ABSTRACT

Consider the p-dimensional unit cube [0,] P , p > 1.

Partition [0 ,1 ]P into n regions, R '...IRn such that the1, (Rjn

volume A(R. )is of order n-1 ,j = 1,...,n. Select and fix

a point in each of these regions so that we have xln)...,x(n)

Suppose that associated with the j-th predictor vector x (

'i . ~~~(n) i nstsyn
there is an observable variable Yxj , j = .,...,n satisfying

• n _ ,(n) (n)
the multiple regression model Yjn) - g(x. ) + e. , where g is

* an unknown function defined on [0,11 P  and {e lare independent
-t (n)

identically distributed random variables with Ee n = 0 and

Var e= < ". This paper proposes

xgnx) - a pI ) k [ (x-u)/anIdu as an estimator of g(x) ,

where k(u) is a known p-dimensional bounded density and

* (a n  is a sequence of reals converging to 0 as n .%n

Weak and strong consistency of gn (x) and rates of convergence

are obtained. Asymptotic .normality of the estimator is established.

Also proposed is an  ,Ij=I(Y -gn=(x f) as a consistent
2

estimate of a

4%



1. INTRODUCTION.

A statistical problem which finds a wide range of appli-

cations is the estimation of a regression functiong(x) = E(YIx),

where Y is a dependent variable and x is a pxl vector of regressors

(p > 1). If g(x) is specified except for a set of parameters,

then a typical estimate for g(x) would be the least squares

estimate which is, of course, the maximum likelihood estimate if

the errors are normally distributed and g(x) is linear. But if

g(x) is completely unknown, it would be desirable to estimate g(x)

by a method that would provide good properties of the estimate.

When x is univariate (i.e., p=l), such a method is proposed and

studied by Priestley and Chao (1972). Their estimate has been

further studied by Benedetti (1977), Cheng and Lin (1981a,b),

and Schuster and Yakowitz (1979), among others. The Priestley-

Chao estimate is nonparametric in the sense that the conditional

distribution of Y given x is not specified. This estimate

resembles the kernel estimate of a probability density function

investigated by Rosenblatt (1956), Parzen (1962), and many others.

'--In h pre .t invstigaticn, an estimate of g(x) is proposed

when there are at least two independent regressors. This is not

a direct generalization of the Priestley-Chao estimate. Also

presented is a consistent estimate for the error variance. With

the aid of the variance estimate, an asymptotic confidence interval

for-gfx+--can be constructed.

The multiple regression function model we discuss here may

be presented as follows: Let [0,1] P denote the p-dimensional
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unit cube (p!l). Divide the unit cube into n mutually disjoint

and totally exhaustive regions RI n,... 1%,n such that the volume

7" of J Rn converges to 0 as n . Fram each of these regicns select

Supos (na (n(n)
uo t y n) is a randcm sample obtained from the following

model-
(n) ( n

Y g( + e j = l,...,n, (

(n) (n)where el... en are independent identically distributed

(n)=(n) 2(iid) random variables such that Ee 0 and Varel 2 < G

and g(-) is an unknown p-dimensional function defined on

[0,1] p . The problem is to estimate g(x). Let A(Rj n ) denote the

volume of the j-th region Rj,n' j l,...,n. A nonparametric

estimate of g(x) is defined by:

gn(x) = a nJ1 if _ k[ x-u)/an]du, (1.2)

where k(u) is a known p-dimensional probability density

function satisfying the following conditions:

,i) supk(u) < -. (ii) lim Ilullk(u) = 0,,:,, u "I lulI-- " "

.Where II • II is the Euclidean distance function.
If an approximate confidence interval for g(x) is

2
desired, then one would need a consistent estimate of a

One such estimate may be given by:
02  -l =ln ) "x~n ))2*i n = .- gn j )2 (1.3)

n n~

The organization of this paper is as follows: In Section

2, weak and strong consistency and their rates, and asymptotic
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normality of g (x) are established. The conditions required

to prove the consistency of gn (x) are much weaker than those of

Priestley and Chao (1972), Schuster and Yakowitz (1979), and

Benedetti (1977);and the methods of proof are different. In
~~~~2 iesalse.Thus

Section 3, the (weak) consistency of an is established

an approximate normal confidence interval for g(x) can be

established. Finally in Section 4 we discuss the optimal choice

of k(u).

In the rest of this paper we employ the following notations:

. wpl >, and D to mean, respectively, convergence in

probability, with probability one, and in distribution. Unless

otherwise specified, hereafter, all integral signs will mean

multiple integration. For easy of exposition, we shall write

R. for Rj, n and suppress all superscripts for Yn), xj , and

() . , =J . -
*- e , j = 1, . .. , n in the remainder of the paper.

2. PROPERTIES OF g (X).

In this section some basic properties of gn(X) are

established. Precisely we show that gn(x) is asymptotically

unbiased (Theorem 1) weakly consistent (Theorem 2), strongly

consistent (Theorem 3), and asymptotically normal (Theorem 6).

We also demonstrate that the rate of weak consistency is of the

order 0(n - ) for some P > 0.

THEOREM 1. If max AR.) = 0 (nf na - D as n if c
1<j<n 

n n

and if g(x) is continuous on [0,1] P , then for each x c [0,I]P,

Egn(x) g(x) as n * w. (2.1)

i - i, i ,  ... ........ i.. ,. '.. .. .. .

.9- .. n



PROOF. Note that

Eg ( = an=gCX.,'a k[(x-u)/an dU,
nn j=1iJR n

where du = du ... dup. Thus,
- p

jEg(x)-g(x)l < IX fj (g&x)-g-u)]aPk[(x-u)/anJdul
n R ) n ne

+ [g(u)-g(x).anPk[(x-u)/an dul

=I + I, say. (2.2)

But since g(x) is uniformly continuous on [0, 1 ]P and

max A(R.) = 0(n - 1 ) then for sufficiently large n, Iln can be
l<j <_n

made arbitrary small. Note also that as n
In I ,][g(u)-g(x)]a Pk[(x-u)/a ]dul 0, (2.3)

= to 1lp - - n -. f

by Lemma 2.1 of Cacoullos (1966) provided nap - =, as
n

n -ll

THEOREM 2. If the conditions of Theorem 1 hold then for all

x C [0 ,11 p

gnX W-L> g(x) as n-p-. (2.4)

PROOF. In light of Theorem 1 we need only to show that for all

x C [0,I] p , gn(X) - Eg n (x)--P > 0 as n -. To this end we use

the following result of Pruitt (1966, Theorem 1): Let (U.} be)

a sequence of iid random variables such that EU1 = 0, and let

Zn n= i j C U where {Cnj) is an array of constants such

that lim C = 0 for every integer J. Then Zn - 0 if
n nj

°°°

"---:-:." -:-:-; -: . -. ..- ..-. .....-. . . . . . . .... .-,. ..,- .,,.. ,, , ,.,,.-_,, .,-.. .,. .. . . . :.
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and only if max C n. 0 as n0. Now set

U Y.-EY. and C a(x-u)/adu. (2.5)
j - ~j an nj n Rj ~ n.a d

Then there exists a positive constant C not depending on n such

that

q' max C . < a - p max A(R-)supk(v) < C(naP)-l * 0, as n -.l< .j<n n - n <_,, <n v - n

Thus the result follows. It

THEOREM 3. Assume that the conditions of Theorem 1 are in force

and that a > Cn- (l - O)/p for some C > 0 and B c (0,1). If- n -- ---

EjelIl+l/8 <-, then for all x e [0,1]P,

gn(x) wpl > g(x), as n -. (2.6)

PROOF. We use another result of Pruit (1966, Theorem 2), in

which it is stated that if max C = O(n - 0) for some 0 < 8 < 1l1j n nj

and if ElU11l+l/0 < cc, then Z n Y~pl > 0, as n 4 o, where CnjI U.,

and Zn are as defined in the proof of our Theorem 2. Thus"i nn

max C. C/(naP) = O(n - B) if we choose a > Cn (l-)/P, and
l<j<n n - n n-

the desire conclusion follows. I i

It is possible to obtain the rates of convergence in weak

consistency (Theorem 2). First we state and prove the following

lemma.
4

LEMMA 1. Suppose that there exist positive constants C1 and C2

such that, for all n > 1,

= ."

I . . . . .. . .. .. . . .. . . " '- '.--' =,-- -. --. - '.. - . -- , , ' :. ;
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> max(Cln-c/P /C2 n(l-8) (2.7)an 1 /'2

for some 0 < a < 8 < 1. If G(u) = P(1Y 1 - EYII > u), and if

utG(u) < M < - for some t > 1 + a/B, then for every c > 0,

P(Ign(x) - Egn(x)I > c) = O(n-), (2.8)

where p = 0(t-1) - a > 0.

PROOF. We make use of Theorem 1 of Franck and Hanson (1966).

Recall the definitions of {C nj, {U.} and Z from the proof"- n

of Theorem 2. Franck and Hanson (1966) show that if for soue constants

o a < o, =C_ < C3 n' max C . < C4n-B, and if for some-- lSC3 <<n n 4

t > 1, 1n, _C t . < C n-p  for some p > 0 then it follows thati~ 1= n3 - 5

P[IZn ]c = 0(n-p ). Identifying Cnj, anPf k[(x-u)/a n du and
nn) n R.

. U. = Y. - EYj, j l,...,n. we see that if an _• C2nj j Cn- n-l" 2

then max C < Cn and if a t then
l<j <n n - 4- t

XCd= a-PI k[(x-u)/a ]du < C*a-P < c n a
S-n n n - 3

n Ct  < m

Finally, 'j=l nj <- max Cnj- j = l nj

<j _n <nCn-
5n-

where P= 8(t-1) -a.II

THEOREM 4. Assume that the conditons of Lemma 1 are in

force. Then for any c > 0 and all x c [0,11 P ,

P[Ig n(x) - g(x) > el - 0(n - 0 ) (2.9)
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_%I

* PROOF. Since Eg nx) - g(x) * 0 as n * - for all x c [0,11 p
p - n

we have for n sufficiently large that I Egn(x) - g(x)lJ _ c/2

and hence

P[Ign(x) - g(x) > ] < P[gn(x) - Egn(X)l _ /21 = 0(n-p

(2.10)

by Lemma 1.1J

We can also establish rates of convergence in the mean

square consistency, i.e., the rate of E[gn(X) - g(x)]2

To this end we establish the following lemma

LEM A 2. Suppose that k(u) is such that

fUl . u. k(u)du = 0 for all i1 1..., i = 1,2 ,...,p and

j = I,...,M- 1 and flu. I ... Jui M k(u)du < for all

il,...,i = 1,2,...,p. Assume also that all partial derivatives

. of order M or less of g(x) exist and are bounded. Then

for any x c [0,1 ]P,

5. [Egn(x) - g(x)] 2 = 0(a2M p )  (2.11)

4

REMARK. Under the present setting Lemma 2 holds only for M < 2.

In order for the lemma to hold for M > 2, however, the kernel

.1! function can no longer be a probability density function. It

must be allowed to take both positive and negative values. Then

Conditions (i) and (ii) for k(.) given in Section 1 must be

appropriately modified. This phenomenon is also noted by

Cacoullos (1966) in th-. ' rnr estimate of a multivariate density

function.
*

%" ~~~"~* ~ ***..-**..-. . .. . .
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PROOF OF LEMMA 2. Recall that

jEg (X) -g(x), S In=..f [g(x) -~~aP[x-)aIu

+ If~g(u) g g(x)Ia-Pk C x-u) /a I dul + I2n
n n n In 2n'

say (2.12)

We shall show that I = (aM) i =1,2, (Ol'.W
in n

shall prove that I ' =O0(alp ), and note that 1I O(0p) may
2n nIn n

be shown analogously. Now, .writing-x' =(x,.. xP F,
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I 2n =IfC*[g(x-a nwI g(xflk(w)dwf, (2.13)

whrl - Ix1 I1  1-x x
* whee --= - - ... X[l. __.. -P 1. Now, using

n an an an

multidimensional Taylor expansion we see that

g(x-a w) - g(x) IM 9 kx -a w)' + -Lg( (x-Oanw;-a w) ,

where g(l) (X;t) it =1 . 1a.g(x) (2.14)
ipla .ax I * ti

I. = i M

Hence

'2n = (M) n
Ij~ f k(w) g (x-ea w; -a w) dw

aMP
n

M~-- nwI 1w I ... Iwi 1( 1) dw,
1 M

where D(i 1 I..i;g)(x) = x . .ax and

1 M

2n C*aMPn (2.16)

Thus the lemma follows.II

THEOREM 5. Assume that the conditions of Lemma 2 are satisfied.

Then for all x E [0,11p and a n= O(n-lI( 2M+l)P),

E~g (x) -2 01 -2M/(2M+l) (.7Egn -) g(x)] n (2.17
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2 2
PROOF. Note that E[gn(x) - g(x)] < Vargn x)+[Egn xl-glx)]

n = 0 (-2n . Thuw

Now from Lemma 2, *[Eg (x) - g(x) 2 2M/2(M+I)

need to evaluate Varg (x)

(x Vargn(X) = 2a 2 P nU k[(x-u)/an]du}
2Vag an  R.={s

(a 2 an 2 Pmax A(R.)f k[(x-u)/an du
(a-- l<j<n )[0,1]P

< C*anPn- = O((naP)- I ) = 0 (;2M/(2M+l)),n 
(2. 18)

by choosing an = 0(n-l/( 2M+l)p). I

As for the asymptotic normality of gn (x) we proceed as

follows: Choose the regions R1 ,..., Rn so that (Rj) = /n,

j = 1,...,n where c1,...,c n are positive constants with j=l.c = n

and that sup ilu - vll= O(n-i/P). Write cmin = min{cj1 and
u, v R. - J

33

cma max{c.1 Assume that V3  Ele 1 13 < ~.Then, for large n,

( (nEla -=(Y-EYj)f k[(xRuk[(x]duj
3

=n a p ) 3 / 2a = 1 l Ry 1 kk/xu)/an -dU3

J

-p 3/2 3
= 3  n i lR k[ x-u)/a n]du)

Cv (nanp ) 3/2(C /n) 2 k[(x-u)/a ]du

3 n max [ 0 ,]p -

_< V C 3 (n a
p )-i1/2

provided that k(.) is bounded. Similarly, for n sufficiently

large, and k(.) is of Lipschitz of order a,

I' n' ' l ~i l~i ml~d~llli;=i rd mll mmmgm anlalla hftm - , , . . .. . . .. ..
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n2 2
naPVarg Wx = n-x=EY-Yk(-)a]u

2(nap) {f k[(x-u)/a ]dul2

= 2 (n-~ AR)[xx / fk(-)' ]du

n 2=

= C,2 n c a-pf k 2 (ix-u)/a ]duijl n R

>(Y2C i R du. (2.19)

Infact, when A(R. = /ri for all j,(naP)Varg W) 2 fk2 M
n, a n~4 1k(~u

Hence applying Liapounov' s central limit theorem (Loeve (1963),

p.277), we see that

(nap) 1/2 [g(x) - Eg~ (x)](a 2 -fk 2 [(xu,),a -dl /

converges to N(0,1) in distribution as n tends to infinity and

that from Lemma 2 with M =2

(np 1/2 (x -gx) =)1/2.

Sn [Eg () gx) 0((na ) .(2.20)

Hence we arrive at the following theorem.

THEOREM 6. Assume that Ele e 1 3 < ~,g(x) has bounded second partial

derivatives. If k is Lip($), fvik(u)du = 0,and flu.u Ik(u)du <
p 5p-

for all i,j 1 ,...,p, if na-e anid if na5  0 as n 4 ,then
n -- n

(nap)1/2[Ig Wx - g(x)]/[a 2  c V 2 1 2  D N(0,1), a s n

where

n R -p k 2[(x-u)/a ]du. (2.21)
n
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Note that when p = 1, the estimate gn (x) is a

competitor to that of Priestley and Chao (1972). The properties

of our estimator held under much weaker conditions than those

of Priestley and Chao (1972) and Benedetti (1977). To make

this remark more precise let us define a multidimensional

extension of the Priestley and Chao estimate and discuss

briefly its properties. Let

9 (x) = aP iYjA(Rj)k(x-xj)/an]. (2. 22)

Note that if p = 1 and we select R [X

j xjl1, xi]

where 0 = x 0 < x 1 < <.. < xn = 1, (2.22) reduces to the

estimate proposed by Priestley and Chao (1972). They prove that if

g(x) and k(u) are both Lipschitz of orders a and B

respectively, if maxA(R) = 0(n- ), and if a = n-

n

0 < y < min(a, ), then gn(x) -L> g(x) for all x c (0,11,

provided that g(x) is continuous on [0,1]. A better result

canbe obtained for in(x) , p > 1 as follows: Consider

2 -pl 2 ~

E(gn(X) - W)2 - E{a n  Yj R [k[(x-xj)/an] - k[(x-u)/an]]du}2nnn {an* j  (x-n])

a l {a k[ (x-x.)/a ] - k[(x-u)/andu)
j1 n -R. -j n n

+ {aPy%=g (xj)j [k[(x-x.)/a] - k(x-u)/an ]du)2

(2.23)
It is not difficult to see that if k(u) is Lipschitz of order

8, then the first term is of order 0 (n- (2B+l) a- (2B+2)p)n
-2B -(20+))

and the second term is of order 0(n- a +2)p), providedn

that max A(Rj) = O(n -I )  Thus if na( I I/B)P - = as
l<j<n n

.. . . .. . . . ,..... . . . . . .. . .
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n * , we conclude, in view of Theorem 2, that: If the conditions

of Theorem 1 hold, if k(u) is Lipschitz of order 0 and if

( ) then n(x) 2-> g(x) as n for all
x E [0,71 p .

Note that while the above result improves that of Priestley and

Chao (1972) it is still weaker than that of Theorem 2, but the

calculation of n (x) is easier than the calculation of g (x),

since the latter requires evaluation of fR.k[(x-u)/an]du which

may not be easy for some kernels such as a multivariate

normal. We shall show in Section 4, however, that the optimum

choice of k(u), is a p.d.f. such that the evaluation of

fR.k[(x-u)/a ]du is not difficult whenever R. is properly devised.

On the other hand, note that it follows from the above-discuss-

-ion that (naP)E(gn _-n(x)) 2 = 0(n-2 0 +1 a- (2+l)P)" Hence,

if na ( 2 0 + ) p / ( 2 0- 1 )  CD as n * =, if the conditions of
n

Theorem 6are satisfied, and if k(u) is Lipschitz of order
8, then (naP)i/ 2 (g (x)-g(x))/[a2 =CjV]/ 2  D >N(0,1),

,n n -1

as n * =; compare this result with Theorem 2 of Benedetti (1977).

We close this section by noticing that the estimate 4n(X)

gives rise to a different estimate of a , namely we can define

.2  1 (Yj-_n 2 (2.24)
n n J 1 n -i

In Section 3, we shall demonstrate that & is also consistentn

but it requires stronger conditions than those needed for the
2

consistency of a

n. . . . '



is

3. CONSISTENCY OF ar2n

In this section we show that a02 is weakly consistent.n

TO this end note that we can write

nc j ~ ~ -g(x.))2  n

+ 2 1% (Y -g(x.))(gnCx.) - g(x.)) iln + 12n + 13n' say.
j 1 j -) n )

(3.1)

Note that nl r in -L" 0 as n - by the weak law of large

numbers. Thus we need to show nl I.i -> 0, 1 = 2,3, as

n * .A stronger conclusion would be to show that

nl Elm in 0, i =2,3, as n- . But
-1 n 'r~(x [E -j_(x.)J2)

nEIn n rJ{~Var(g~~) )2~ (3.2)
pn nn

In view of (2.19), napVarg (x) 2 n~.cV 2 0 (1) , as n

* Hence the first term of (3.2) is readily seen to be of order

0((nap) l) o(1) if nap as n * .Next, if then n

conditions of Lemmia 2 hold with M = 2, then the second term

4-lof (3.2) is of order 0O(a 4~ n o(l). As for n- El 3n we have

n EI3 n cS 2n.{ 1E1/2 (Yj-g ( )E (n( -~

0(n-1 /2 a3p/2 )=ol,(3.3)
n

under the same conditions used in the proof of (3.2). Hence we

* arrive at

THEOREM 7. Assume that the conditions of Lemma 2 are satisfied

with M =2. Then

an -2 a 2as n *.(3.4)

* .. n
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Note that we can derive an analogous result for a2 under
n

a bit stronger conditions, viz., write

.2 n2 2 -1 2

n 2 Y (x a -n + n l(g (X)-4(xn ._i y- n n )

-. -i 2 n jl yj (xj)) (gn(Xj) 4 (-xj))

2 2But anP_>2 and E(gn(X)- nWX)2 -> 0 if k(u) is Lipschitz

of order i and na (1+1/ O3) P  Thus we can easily see that the
n

second and the third terms of the above expression of a2 haven

expected values converging to 0, as n l -.

It is possible also to obtain the second mean convergence

of a2  (and thus of a 2) under the extra assumption thatn n
na 2 p  O as n and Ee 4 < C. To see this, we

need to show that Vara2 * 0 as n . Now,
n

Var(a2 n-2{ 'iVar[(Yj -(x))2] + jCovYj-gn(Xj)),

(Yj,-gn (Xj))]l = n-2 {Jln+J2 n}, say. (3.5)

But

Var[(Yj-g (x.)) 2 = Var(Y2) + Var(g2(x ) + 4Var(Y~gn(X.))
J nj nI jgn-j

+ 2Cov(Y ,gn(xj))
3 n -J

- 4Cov(Y ,Yjgn(xj)) - 4 Cov(Yjg ( 2 (),gn(xj)).

jgn - jgn(Xj)-g

(3.6)

Whenever max A - 0(n -I) and na 2 p * as n ,ls<n n

it is not difficult to obtain that

% p
% ' "

% " Q ''.%-. ""'* " ' ." ° 4 " - "" %"" .".•.
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2 -2 -4p) p
Var(g2(xj) = 0(n- a ), Var(Yjg n (x)) = 0(n-a

n) n n -jn

2 2 -1- 2p 2 -- ,an))0(n a- ),Cov(Y .Y (x.)) = a(n-anP), ardCov(yjgn(Xj) n Y Jgn n
Cov(g 2(x), Yg(X)) = 0(n 3/2a3p).

-2 -i r[(j-gg x j )n

Hence it follows that n 2 0 as

n . Similar but perhaps more tedious algegra also reveals

that n- 2 o((Yj-gn(x)) (YjnXj + 0 as n ,

provided that na 2 p  .
n

Finally note that one can combine Theorems 6 and 7 to

conclude that an asymptotically normal confidence interval for

g(x) can be constructed with the limits

g(x) + z / [a 2  n 2 1/2

where z denote the upper 100a% point of the standard normal

distribution and V2 is given in (2.21).

4. OPTIMAL CHOICE OF THE KERNEL.

We now proceed to find the kernel k(u) which minimizes

2
the mean square error E(g (x)-g(x)) . Note that since the present: n ~

regression estimation problem resembles the density estimation

problem, it is not surprising that the optimal choice of the kernel

function for our problem turns out to be exactly the same as that

derived for the density estimation problem. For the latter case

when k(u) = HP k(u i ) where k(.) is a bounded univariate p.d.f.

such that Iulk(u) - 0 as Jul + , see Epanechnikov (1969). Assume

for the remaining of the study that A(Rj) = 1/n, j = l,...,n. Let

"k(t) denote the characteristic function of k(u), i.e.,

it'uk(t) l e -- k(u)du. (4.1)

*. . .. .... .• ..- -.- ,-, .,....-......-..,. .-.-.....-.... .-. .- ,.... -,,...... . -.. .,... ... -. -..- -.. -. ..-
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Then we can-write

Egn(X) g(x) (2w)-{I j= (x-j)R. eiW' (x-u) W)dwdu

- (2, -Pfe - f (w)dw, (4.2)
Iwx

where f* (w) =['lp 1Wgx dx

Thus

iw'x - n -ilUEgn(x) g(x) = (2) x[fe (k(anw) [=lg(xj)f e- -du- (w)]dw.

= (21r) P{e i w ' (anw) [= l g (x%)-e - i w VUduT$ g

"" , iWIX.

+ Ie ~ (w)[k(an w) - l]dw. (4.3)

Now, if g is bounded and continuous, then by the dominated

convergence theorem,

n -x j eiW'u du gW) as n ( . (4.4)

Thus the first term in the right-hand-side (rhs) of (4.3)converges

to 0 as n-t. Next, if there exist positive rI ,...,rp such thati I  /i~p iri k l

[1-k(u)] /Iu I k . a non zero constant, as
i=1

hull 0, then rl,..., are called the characteristic

exponents of k and k the characteristic coefficient.• p".2r 1  . . ,

Thus

X ~ri _ -iw'x-
a =i( 2w)fe -  (w) [k(anw) - lldwn 2g

iw x k (a .w)-l p rid

(2,,)-Pfe f (w) w Idw9i " la nwil i i1

i i l iri-

-e- k fe(w)dw
ilkrl' g - -

'
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ri r
= krl ' . ,rh P(x), say. (4.5)

Now, since Varg W) _, 2 (naP) -k 2 (u)du for n sufficiently
nn--

large we obtain that 02  np- k 2 2(Xri) hr,-rp) 2

E(g(X) -g(x))) 2  2 (nap) (u)du + a Ikr r .Pr 2

(4.6)

where Iri = IP=iri. Thus the rhs of (4.6) is minimized by

choosing an  as follows:
22rl'..' 1 21 11/(p+21ri),

a n = {(pO 2/n) k 2 (u)du/2(r i )k r ... ,rp

* (4.7)

and the minimum value is

222jr i/(P+lr i )  21ri/(P+lr i )
(p + 2P 1 ri) {a 2 fk 2 (u)du) [(2jri)n]

kr rph P(x) m  , (4.8)

which tends to 0 at the rate n . Now suppose that
p

among the special class of kernels k(u) = H ku with
~ =1

k(-) a known bounded p.d.f., with r. = 2,i = l,...,p we want
• • 1

to find the one that minimizes (4.8). This problem is precisely

that of Epanechnikov (1969) whose solution is found to be

k 0 (u) =(3/4)(l-u2 1, jul < 1 , =0, elsewhere.

.

•.

4
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